International Journal of Pharmacy \& Life Sciences (Int. J. of Pharm. Life Sci.) QSAR/QSPR Modeling of 2-Phenylindoles as Anticancer Agents

Santosh Kumar Tiwari ${ }^{1}$, Shailja Sachan ${ }^{2}$, Kamlesh Mishra ${ }^{3}$, Santosh Tiwari ${ }^{4}$ and Vikash Pandey ${ }^{4}$
1, Department of Chemistry, Govt. S.K. P.G. College, Mauganj, Rewa, (M.P.) - India
2, Department of Chemistry, Govt. M.S.G. College, Rewa, (M.P.) - India
3, Department of Chemistry, A.P.S.University, Rewa, (M.P.) - India
4, Department of Chemistry, Govt. G.D.C. College, Rewa, (M.P.) - India

Abstract

In a continuing effort to develop novel 2-phenylindoles endowed with better pharmacological profiles. A series of 2phenylindoles derivatives were designed on the basis of previously developed QSARs.These drugs offer novel mechanisms of action and expanded spectrums of activity over traditional treatment option. However, with these new agents comes the need for increased awareness of the potential interactions and toxicities associated with these drugs. The best models for different cancer cell were first validated by leave-one-out cross validation procedure. It was revealed that topological, physicochemical and indicator parameters were found to have overall significant correlationship with anticancer activity and these studies provide an insight to design new molecules.

Key-Words: QSAR, Hansch Approach, Anticancer Activity

Introduction

Tubulins consist of a small group of globular proteins with approximate molecular weight of 55 kilodaltons. The most common members of the tubulin family are α-tubulin and β-tubulin. Microtubules are assembled as dimers of α - and β-tubulin subunits.[1] Microtubule is the generic name of a class of subcellular components that occur in a wide variety of eukaryotic cells. Such structures are straight cylinders, $240 \pm 20 \AA$ in diameter, with a hollow 150 Å core.
They have diverse biochemical functions which include chromosome movements in cell division, intracellular transport of materials, development and maintenance of cell form, cellular motility, and sensory transduction. It is well known that the disruption of microtubules by antimitotic drugs or physical factors results in disruption of cellular function.[2]

[^0]Various tubulin binding ligands with antimitotic and anticancer properties have been reported in the literature. [3-6] Regarding the binding sites of the various ligands, these can be classified into three main groups: those that bind tubulin at the colchicinebinding site; those that bind at the vinblastine site, and those that bind at the taxol site. The inhibition of microtubule formation via tubulin polymerization results in mitotic arrest which, in turn, promotes vascular disruption, leading to cell death by apoptosis. Hence, tubulin has emerged as a popular target for anticancer drug design.[7-8] Von Angerer et al. synthesized a group of 2-phenylindole derivatives and determined their anticancer activities in human breast cancer cells.[9-11]
One of their critical observations was that these compounds prevent the polymerization of the α / β tubulin dimers to functional microtubules by binding to the colchicine-binding site and all have pronounced cytotoxicity, indicating their good potential as a new class of anticancer drugs.
Consequently, there has been a lot of interest in understanding the structural basis of the anticancer activity of 2-phenylindoles using quantitative structureactivity relationship (QSAR) modeling. In fact, Liao et al. [12] applied the comparative molecular field analysis (CoMFA) approach to a set of 43 analogs of 2phenylindole with reasonable results.

In our previous studies we found that mathematical molecular descriptors, invariants of simple and weighted molecular graphs in particular, which can be calculated directly from chemical structure without the input of any other experimental data, can predict property/ bioactivity/toxicity of various congeneric and structurally diverse classes of chemicals. [13-24] So in this paper we carried out QSAR modeling on the set of 43 2-phenylindoles using a diverse collection of mathematical structural invariants.

Fig.1. Molecular structure of 2-phenylindole derivatives

Table 1: Substitution in the structure of 2phenylindole derivatives against human breast cancer cell line MDA-MB 231

S.No.	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	\mathbf{X}
1	H	H	H	$\mathrm{C}(\mathrm{CN})_{2}$
2	H	H	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
3	H	OCH_{3}	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
4	OCH_{3}	H	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
5	H	F	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
6	F	H	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
7	OCH	H	CH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
8	H	CH_{3}	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
9	Cl	CH_{3}	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
10	H	$\mathrm{n}-\mathrm{Pr}$	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$

11	H	i-Pr	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
12	H	n-Bu	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
13	H	n-Pentyl	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
14	H	n-Hexyl	OCH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
15	H	n-Bu	CH_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
16	H	n-Bu	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{C}(\mathrm{CN})_{2}$
17	H	n-Bu	CF_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
18	H	n-Pentyl	CF_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
19	H	n-Hexyl	CF_{3}	$\mathrm{C}(\mathrm{CN})_{2}$
20	H	OCH	OCH_{3}	O
21	OCH	H	OCH_{3}	O
22	F	H	OCH_{3}	O
23	H	F	OCH_{3}	O
24	Cl	H	OCH_{3}	O
25	Cl	CH 3	OCH_{3}	O
26	H	CH 3	OCH_{3}	O
27	H	Pr	OCH_{3}	O
28	H	n-Bu	OCH_{3}	O
29	H	sec-Bu	OCH_{3}	O
30	H	t-Bu	OCH_{3}	O
31	H	n-Pentyl	OCH_{3}	O
32	H	n-Hexyl	OCH_{3}	O
33	OCH	OCH	OCH_{3}	O
34	OCH	H	CH_{3}	O
35	H	CH 3	CH_{3}	O
36	H	n-Bu	CH_{3}	O
37	H	n-Bu	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	O
38	H	$\mathrm{CH} \mathrm{CH}_{3} \mathrm{CH}$	n-Bu	O
39	H	n-Bu	CF_{3}	O
40	H	n-Pentyl	CF_{3}	O
41	H	n-Hexyl	CF_{3}	O
42	OCH	H	H_{3}	O
43	H	H	H_{3}	O
1				

Material and Methods

The Database
The 43 compounds used for the QSAR models in this study were taken from the published work of von Angerer and his coworkers.[25-31] Liao et al.[12] carried out a QSAR using this set of compounds. The anticancer activity of the 43 2-phenylindole derivatives was measured as the level of cytotoxicity against human breast cancer cell line.
The range of IC_{50} values was 5.5 to 720 nM , more than two orders of magnitude between the most and least potent derivatives. We used pIC_{50} values of the compounds ($\mathrm{pIC}_{50}=-\log \mathrm{IC}_{50}$) as dependent variable in our models. The structural formula of the studied
compounds is shown in Fig 1. The structure of each compound is listed in Table1. Standardized by auto scaling to zero mean and unit standard deviation.

Statistical Analysis

Three regression methods that are appropriate when the number of descriptors exceeds the number of observations are ridge regression (RR),[32-37] principal component regression (PCR),[38] and partial least squares (PLS) regression. [38-39] These are shrinkage methods that avoid over fitting by imposing a penalty on large fluctuations of the estimated parameters. They are designed to utilize all available descriptors, as opposed to subset regression wherein variable selection is employed, and can be used with descriptors that are inter-correlated. RR, Statistical theory suggests that $R R$ is the best of the three methods, and we have found in comparative studies that RR outperforms PCR and PLS in the vast majority of cases. [21, 39, 40-45] Therefore, we report only the ridge regression results in the current study. The leave-one-out (LOO) method was used for model crossvalidation. Unfortunately, it is a widely held belief that the use of a hold-out test set is always the best method of model validation. However, theoretic argument and empiric study46 have shown that the LOO crossvalidation approach is preferred to the use of a holdout test set unless the data set to be modeled is very large.
The drawbacks of holding out a test set include:

1) Structural features of the held out chemicals are not included in the modeling process, resulting in a loss of information,
2) Predictions are made on only a subset of the available compounds, whereas LOO predicts the activity value for all compounds,
3) There is no scientific tool that can guarantee similarity between the training and test sets, and
4) Personal bias can easily be introduced in selection of the external test set.
The reader is referred to Hawkins et al. [46] and Kraker et al. [47-62] for further discussion of proper model validation techniques. The reader is cautioned to be critical of research studies which involve descriptor selection and cross-validation.
In many such studies, the q^{2} is obtained via a two-step process wherein a subset of descriptors is first selected, followed by cross-validation of the model which is developed based on those descriptors. When using cross-validation and descriptor selection, it is essential that the descriptor selection step be included in the validation procedure.
Descriptors with large R^{2} values are highly significant in the predictive model and, as such, can be examined in order to gain some understanding of the nature of the property or activity of interest.
It must be noted, however, that no conclusions may be drawn with respect to descriptors associated with small values. For the sake of clarity, it should be re-stated that the ridge regression method used in the current study does not involve variable selection, as this is a shrinkage method which is designed to use all available descriptors [63-79].

Results and Discussion

The calculated descriptors and bioactivity of each compound used in stepwise MLR are given in Table 2. The correlation matrix is given in Table 3 while Table 4 represents validated and cross-validated statistical descriptors of developed QSAR/QSPR models.
After 2D QSAR study by Multiple Linear Regression method using forward-backward stepwise variable selection method, the final QSAR equation developed QSAR/QSPR models was as follows. The highest correlation coefficient ($\mathrm{r} \geq 0.8$) between the descriptors as illustrated in Table 3.

Table2: Experimental anticancer activities against human breast cancer cell line with Calculated topological and indicator descriptors

C.No	$\mathbf{p I C}_{\mathbf{5 0}}$	$\mathbf{D E N}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{0}} \mathbf{v}$	$\mathbf{X}_{\mathbf{1}} \mathbf{v}$	$\mathbf{X}_{\mathbf{2}} \mathbf{v}$	$\mathbf{X}_{\mathbf{3}} \mathbf{v}$	$\mathbf{I P}_{\mathbf{1}}$	$\mathbf{I P}_{\mathbf{2}}$	$\mathbf{I P 3}^{\prime}$	$\mathbf{I P}_{\mathbf{4}}$
1	6.367	1.28	7.649	11.168	6.507	4.639	3.323	0	0	0	0
2	6.143	1.27	8.467	12.499	7.03	5.002	3.64	0	0	0	0
3	6.229	1.27	9.27	13.83	7.559	5.336	3.956	0	0	0	0
4	6.585	1.27	9.167	13.83	7.553	5.371	3.921	1	0	0	0
5	6.398	1.33	8.955	12.799	7.135	5.115	3.723	0	0	0	0
6	6.553	1.33	8.728	12.799	7.129	5.149	3.677	0	1	0	0
7	6.745	1.25	8.759	13.421	7.44	5.509	3.883	1	0	0	0
8	6.553	1.25	8.955	13.421	7.446	5.451	3.994	0	0	0	0
9	7.125	1.32	9.479	14.478	7.93	5.959	4.495	0	1	1	0
10	7.081	1.2	9.405	14.836	8.507	6.043	4.385	0	0	1	0
11	6.678	1.2	9.405	14.836	8.507	6.043	4.385	0	0	0	0

Sakun Publishing House (SPH): IJPLS

12	7.585	1.18	9.674	15.543	9.007	6.396	4.666	0	0	1	0
13	7.377	1.16	9.924	16.25	9.507	6.75	4.916	0	0	1	0
14	7.337	1.15	10.174	16.957	10.007	7.103	5.166	0	0	1	0
15	7.187	1.16	9.265	15.135	8.895	6.534	4.627	0	0	1	0
16	7.119	1.14	9.674	15.842	9.455	6.718	4.938	0	0	1	0
17	7.252	1.27	10.202	15.768	9.212	6.743	4.788	0	0	1	0
18	7.108	1.25	10.452	16.476	9.712	7.096	5.038	0	0	1	0
19	6.824	1.23	10.702	17.183	10.212	7.45	5.288	0	0	1	0
20	6.585	1.24	7.981	11.844	6.559	4.672	3.544	0	0	0	1
21	7.456	1.24	7.901	11.844	6.553	4.707	3.507	1	0	0	1
22	7.229	1.3	7.461	10.813	6.129	4.486	3.263	0	1	0	1
23	6.268	1.3	7.666	10.813	6.135	4.452	3.311	0	0	0	1
24	7.569	1.33	7.461	11.569	6.507	4.922	3.481	0	1	0	1
25	7.585	1.3	8.19	12.492	6.93	5.295	4.083	0	1	0	1
26	7.066	1.21	7.666	11.435	6.446	4.787	3.582	0	0	0	1
27	7.699	1.2	8.116	12.85	7.507	5.379	3.974	0	0	0	1
28	8.174	1.14	8.385	13.557	8.007	5.733	4.254	0	0	1	1
29	7.143	1.14	8.738	13.72	7.928	5.868	4.541	0	0	0	1
30	6.553	1.14	8.42	13.935	7.696	6.767	4.172	0	0	0	1
31	8.26	1.13	8.635	14.264	8.507	6.086	4.504	0	0	1	1
32	8.131	1.11	8.885	14.971	9.007	6.44	4.754	0	0	1	1
33	6.658	1.24	8.699	13.174	7.088	5.016	3.825	1	0	0	1
34	7.509	1.21	7.492	11.435	6.44	4.845	3.469	1	0	0	1
35	7.319	1.18	7.258	11.027	6.334	4.924	3.544	0	0	0	1
36	7.469	1.12	7.977	13.148	7.894	5.87	4.216	0	0	1	1
37	7.569	1.1	8.385	13.855	8.455	6.054	4.526	0	0	1	1
38	6.523	1.1	8.369	13.855	8.455	6.054	4.518	0	0	0	1
39	7.481	1.24	8.913	13.782	8.211	6.079	4.376	0	0	1	1
40	7.377	1.22	9.163	14.489	8.711	6.433	4.626	0	0	1	1
41	7.367	1.2	9.413	15.196	9.211	6.786	4.876	0	0	1	1
42	6.62	1.24	7.082	10.513	6.029	4.345	3.191	1	0	0	1
43	6.377	1.24	6.382	9.182	5.506	3.975	2.91	0	0	0	1

IP P_{1} : When OCH_{3} is present in R_{1} taken as unity, otherwise it is zero., IP_{2} : When F and Cl is present in R_{1} taken as unity, otherwise it is zero., $I P_{3}$: When n is present in R_{2} taken as unity, otherwise it is zero., $I P_{4}$: When O is present in R_{3} taken as unity, otherwise it is zero.

Table 3: Correlation Matrix

	$\mathbf{p I C}_{\mathbf{5 0}}$	$\mathbf{D E N}$	$\mathbf{X}^{\mathbf{3}}$	$\mathbf{X}^{\mathbf{3}} \mathbf{v}$	$\mathbf{I P}_{\mathbf{1}}$	$\mathbf{I P}_{\mathbf{2}}$	$\mathbf{I P 3}$	$\mathbf{I P}_{\mathbf{4}}$
$\mathbf{\mathbf { I C C } _ { \mathbf { 5 } \mathbf { 0 } }}$	1.0000							
$\mathbf{D E N}$	-0.4520	1.0000						
$\mathbf{X}^{\mathbf{3}}$	0.0868	-0.1194	1.0000					
$\mathbf{X}^{\mathbf{3}} \mathbf{V}$	$\mathbf{0 . 3 9 8 3}$	-0.5006	0.8685	1.0000				
$\mathbf{I P}_{\mathbf{1}}$	-0.1104	0.1441	-0.2075	-0.3411	1.0000			
$\mathbf{P P}_{\mathbf{2}}$	0.1811	0.4596	-0.1770	-0.1647	-0.1289	1.0000		
$\mathbf{I P}_{\mathbf{3}}$	0.5358	-0.4349	0.6245	0.7920	-0.3417	-0.1094	1.0000	
$\mathbf{I P}_{\mathbf{4}}$	0.3670	-0.2602	$\mathbf{- 0 . 6 6 6 0}$	-0.3325	0.0880	0.1237	-0.1942	1.0000

Sakun Publishing House (SPH): IJPLS

The developed QSAR/QSPR model no. 1 is biparametric which represents the importance of connectivity indices $X^{3}{ }_{v}$ and X^{3} which is directly proportional with the magnitude of \log of 50% of inhibitory concentration of anticancer activity.

QSAR Model No. 1

$\mathrm{pIC}_{50}=7.3315+1.1806 \mathrm{X}^{3} \mathrm{v}-0.5925 \mathrm{X}^{3}$
Eq......... 1
The developed QSAR/QSPR model no. 2 is also biparametric QSAR model shows the importance of indicator descriptors which is directly proportional with the anticancer activity reveals that as the magnitude of indicator descriptors increases the inhibitory activity also increases
QSAR model No. 2 .
$\mathrm{pIC}_{50}=6.4957+0.6826 \mathrm{IP}_{3}+0.5261 \mathrm{IP}_{4}$

$$
\text { Eq......... } 2
$$

With reference to Table 3 the selected descriptors are used for biparamatric QSAR model no. 1 development which show the importance of IP_{3} and IP_{4} which is directly proportional with the anticancer activity with the anticancer activity. The Biparametric
low statistical results indicates needs for the development of Triparametic and more QSAR models follow rule of thumb. The QSAR model no. 2 has significant importance in which $\mathrm{IP}_{2}, \mathrm{IP}_{3}$ and IP_{4} has positive contribution with the anticancer activity. The
statistical descriptors are given in Table no. 4 (Model No.3).
QSAR Model No. 3
$\mathrm{pIC}_{50}=6.4672+0.3565 I \mathrm{P}_{\mathbf{2}}+\mathbf{0 . 7 0 1 2} \mathrm{IP}_{\mathbf{3}}+\mathbf{0 . 5 0 3 9 I P _ { 4 }}$

$$
\text { Eq....... } 3
$$

The four parametric QSAR/QSPR model no. 4 reveals the importance of indicator descriptors and physicochemical descriptors in which density shows the negative correlation coefficient while the indicator descriptors $\mathrm{IP}_{2}, \mathrm{IP}_{3}$ and IP_{5} show positive correlation coefficient with the indicator descriptors.

QSAR Model No. 4
 $\mathrm{pIC}_{50}=\mathbf{9 . 3 9 5 8}^{2}+\mathbf{0 . 5 9 7 3 I P _ { 2 }}+\mathbf{0 . 5 5 8 1} \mathrm{IP}_{3}+\mathbf{0 . 3 7 9 1 I P _ { 4 } -}$
 2.3161DEN
 Eq... 4

The above developed QSAR/QSPR model no. 04 have four serious outliers in the series and after ommiting it the resulted developed QSAR/QSPR model no. 5 is statistically significant.
After deletion of compound no.21, 29, 35 and 38
QSAR Model No. 5

$$
\begin{gathered}
\mathrm{pIC}_{50}= \\
10.6870+0.7577 \mathrm{IP}_{2}+0.5393 \mathrm{IP}_{3}+0.2739 \mathrm{IP}_{4}- \\
3.3584 \mathrm{DEN} \quad \mathrm{Eq}_{2} \ldots \ldots .5
\end{gathered}
$$

The developed QSAR/QSPR model 05 show positive correlation coefficient of indicator descriptors and negative correlation coefficient between the anticancer activity and density. The overall statistical and crossvalidated descriptors are given in Table 4

Table 4: Statistical and Cross-Validated descriptors of Developed QSAR/QSPR Models

Model	\mathbf{n}	Intercept	$\mathbf{R}^{\mathbf{2}}$	F-Ratio	PRESS	$\mathbf{R}^{\mathbf{2}} \mathbf{\text { cv }}$	$\mathbf{R}^{\mathbf{2}}$ ADJ
1	43	7.3315	0.4321	15.218	8.1433	0.3351	0.4037
2	43	6.4957	0.5178	21.476	6.7447	0.4493	0.4937
3	43	6.4672	0.5546	16.187	6.5796	0.4628	0.5203
4	43	9.3958	0.5938	13.886	6.4076	0.4768	0.5511
5	39	10.687	0.7127	21.083	4.3936	0.6077	0.6789

The above study leads to the development of

The randomization test suggests that the developed model have a probability of less than 1% that the model is generated by chance. Statistical data is shown in Table 4.The observed and predicted pIC_{50} along with residual values are shown in Table 5. The plot of observed vs. predicted activity is shown in Fig. (2). From the plot it can be seen that MLR model is able to predict the activity of training set quite well (all points are close to regression line) as well as external.
statistically significant QSAR model, which allows understanding of the molecular properties/features that play an important role in governing the variation in the activities. In addition, this QSAR study allowed investigating influence of very simple and easy-tocompute descriptors in determining biological activities, which could shed light on the key factors that may aid in design of novel potent molecules.

Table 5: Results of Regression Analysis

No.	Para. Used	$\mathbf{A i}(\mathbf{1}, \ldots . .3)$	Intercept	F-Ratio	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{A R}^{\mathbf{2}}$
1	$\mathrm{X}_{3} \mathrm{~V}$	1.1806 -0.5925	7.3315	15.218	0.4321	0.4037
2	X^{3}	IP_{3}	0.6826	6.4957	21.476	0.5178
3	IP_{4}	0.5261	0.4937			
	IP_{2}	0.3565	6.4672	16.187	0.5546	0.5203

Sakun Publishing House (SPH): IJPLS

Comp. No.	Actual pIC_{50}	Predicted pIC_{50}	Residual
1	6.367	6.388	-0.021
2	6.143	6.422	-0.279
3	6.229	6.422	-0.193
4	6.585	6.422	0.163
5	6.398	6.22	0.178
6	6.553	6.22	0.333
7	6.745	6.489	0.256
8	6.553	6.489	0.064
9	7.125	7.551	-0.426
10	7.081	6.657	0.424
11	6.678	7.196	-0.518
12	7.585	7.263	0.322
13	7.377	7.33	0.047
14	7.337	7.364	-0.027
15	7.187	7.33	-0.143
16	7.119	7.398	-0.279
17	7.252	6.961	0.291
18	7.108	7.028	0.08
19	6.824	7.095	-0.271
20	6.585	6.796	-0.211
22	7.229	7.353	-0.124
23	6.268	6.595	-0.327
24	7.569	7.252	0.317
25	7.585	7.353	0.232
26	7.066	6.897	0.169
27	8.174	7.672	0.502
28	7.143	7.132	0.011
30	6.553	7.132	-0.579
31	8.26	7.705	0.555
32	8.131	7.772	0.359
33	6.658	6.796	-0.138
34	7.319	6.998	0.321
36	7.469	7.739	-0.27

Fig 2: Graph plotted between predicted pIC_{50} and Actual pIC_{50}

Conclusion

Topological indices and atom pairs derived from chemical graph theory produced high-quality models for the prediction of anticancer activity of a set of 43 phenylindole derivatives which act by the disruption of tubulin working through the colchicine binding site. The QSAR formulated using TIs and APs together was superior to the QSAR model developed from the same set of chemicals. Easily calculated molecular descriptors like TIs and APs used in this paper may find application in the QSAR and in silico prediction of bioactivity of potential therapeutic agents in new drug discovery protocols as well as other toxic substances.

Sakun Publishing House (SPH): IJPLS

Fig 3: Graph plotted between Observed pIC_{50} and Residual.

Acknowledgement

The authors are thankful to Prof. V.K. Agarwal, Head of Department of chemistry, A.P.S.University Rewa (M.P.) INDIA for their invaluable discussions and guidance. This work was supported by QSAR Research Lab. Department of Chemistry, Govt. M.S.G. College, Rewa (M.P.) INDIA.

References

[1]. J. R. Williams, C. Shah, D. Sackett, Separation of Tubulin Isoforms by Isoelectric Focusing in Immobilized pH Gradient Gels.Anal biochem., 275(2) (1999) 265-267.
[2]. J. B. Olmsted, G. G. Borisy, Microtubules, Annu. Rev. Biochem., 42 (1973)507-540.
[3]. E. Hamel Antimitotic natural products and their interactions with tubulin. Med. Res. Rev., 16[2] (1996)207-231.
[4]. A. Jordan, J. A. Hadfield, N. J. Lawrence, A. T. McGown, Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle.Med. Res. Rev., 18 (1998)259-296.
[5]. Q. Shi, K. Chen, S. L. MorrisNatschke, K. H. Lee, Recent progress in the development of tubulin inhibitors as antimitotic antitumor agents. Curr.Phar. Des., 4(1998)219-248.
[6]. E. Nogales, Annu. Rev. Structural insights into microtubule function.Biochem., 69 (2000) 277-302.
[7]. E. Pasquire, N. Andre, D. Braguer,: implications for cancer treatment Targeting microtubules to inhibit angiogenesis and disrupt
tumour vasculature.Curr. Cancer Drug Targets., 7 (2007)566-581.
[8]. K. Odlo, J. Hentzen, J. F. dit Chabert, S. Ducki, O. A. B. S. M. Gani, I. Sylte, M. Skrede, V. A. Florenes, T. V. Hansen 1,5-Disubstituted 1,2,3triazoles as cis-restricted analogues of combretastatin A-4: Synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin.Bioorg. Med. Chem., 16(2008) 4829-4838.
[9]. R. Gastpar, M. Goldbrunner, D. Marko, E. von Angerer, Methoxy-substituted 3-formyl-2phenylindoles inhibit tubulin polymerization. J.Med. Chem., 41(1998) 4965-4972.
[10]. M. Pojarova, D. Kaufmann, R. Gastpar, T. Nishino, P. Reszka, P. J. Bednarski, E. von Angerer. [(2-Phenylindol-3-yl)methylene]propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in $\mathrm{G}(2) / \mathrm{M}$ phase and apoptosis.Bioorg. Med. Chem., 15(2007)7368-7379.
[11]. D. Kaufmann, M..Med. Pojarova, S. Vogel, R. Liebl, R. Gastpar, D. Gross, T. Nishino, T. Ptfaller, E. von Angerer, Antimitotic activities of 2-phenylindole-3-carbaldehydes in human breast cancer cells. Bioorg Chem., 15(2007) 5122-5136.
[12]. S. Y. Liao, Q. Li, T. F. Miao, H. L. Lu, K. C. Zheng, CoMFA and docking studies of 2-phenylindole derivatives with anticancer activity. European J. Med. Chem., 44(2009) 2822-2827.
[13]. S. C. Basak, B. D. Gute, L. R. Drewes, Quantitative structure-activity relationship of bioactive agents using structural information content (SIC) Pharm. Res., 13 (1996)775-778.
[14]. S C. Basak and D. Mills, Prediction of Mutagenicity Utilizing A Hierarchical Qsar ApproachSAR QSAR Environ. Res., 12(2001) 481-496. [15]. S. C. Basak, D. Mills, B. D. Gute, G. D. Grunwald, and A. T. Balaban, Topology in Chemistry: Discrete Mathematics of Molecules, D. H. Rouvray and R. B. Biological Concepts and Techniques in Toxicology: An Integrated Approach King, Eds., Horwood Publishing Limited, Chichester, England, pp. 113-184 (2002).
[16]. S. C. Basak, B. D. Gute, D. Mills, D. M. Hawkins., :Some comments on applications of graph theory in chemistry, ecology, environmental protection, omics sciences, and drug discovery J. Mol.Struct. (Theochem) 622(2003) 127-145.
[17]. S. C. Basak, K. Balasubramanian, B. D. Gute, D. Mills, A. Gorczynska, S. Roszak, Prediction of cellular toxicity of halocarbons from computed chemodescriptors: A hierarchical QSAR approach J. Chem. Inf. Comput. Sci., 43(2003) 1103-1109.
[18]. S. C. Basak, R. Natarajan, D. Mills, in Conference Proceedings: WSEAS Transactions on Information Science and Applications., (2005) 958963.
[19]. S. C. Basak,. D. Mills, Prediction of partitioning properties for environmental pollutants using mathematical structural descriptors ARKIVOC., 10 (2005) 60-67
[20]. S.C. Basak, D. Mills, B.D. Gute, and R. Natarajan, Predicting pharmacological andtoxicological activity of heterocyclic compounds using QSAR and molecularmodeling, in Topics in Heterocyclic Chemistry Vol. 5: QSAR and Molecular ModelingStudies of Heterocyclic Drugs, S.P. Gupta, ed., Springer-Verlag, Berlin-Heidelberg-New York, (2006) 39-80.
[21]. S. C. Basak, D. Mills, B. D. Gute, Prediction of tissue: air partition coefficients - theoretical vs. experimental methods SAR QSAR Environ. Res., 17(2006)515-532.
[22]. S.C. Basak, D. Mills, and B.D. Gute,Quantitative structure-toxicity relationships using chemodescriptors and biodescriptors, inBiological Concepts and Techniques in Toxicology: An Integrated Approach, J. E. Riviere, ed., Taylor \& Francis, New York, (2006) 61-82.
[23]. S. C. Basak, D. Mills, Predicting the vapour pressure of chemicals from structure: a comparison of graph theoretic versus quantum chemical descriptors SAR QSAR Environ. Res., 20(2009)119-132.
[24]. S. C. Basak, D. Mills, R. Natarajan, B.Gute "Predicting chemical reactivity and bioactivity of molecules from structure," ChemicalReactivity Theory: A Density Functional View, P. K. Chattaraj, ed., CRC Press, Boca Raton, FL, (2009)479-502.
[25]. R. E. Carhart, D. H. Smith, R. Venkataraghavan, Virtual Screening for Bioactive Molecules J. Chem. Inf. Comput. Sci., 25(1985) 64-73.
[26]. S. C. Basak, B. D. Gute, D. Mills, Similarity methods in analog selection, property estimation and clustering of diverse chemicals.ARKIVOC.,9 (2006) 157-210.
[27]. S. C. Basak, G. D. Grunwald, AP Probe, Copyright of the University of Minnesota, (1993).
[28]. S. C. Basak, D. K. Harriss, V. R. Magnuson, POLLY v. 2.3, Copyright of the University of Minnesota, (1988).
[29]. P. A. Filip, T. S. Balaban, A. T. Balaban,.A new approach for devising local graph invariants: Derived topological indices with low degeneracy and good correlation ability.J. Math. Chem., 1 (1987) 61-83.
[30]. Molconn-Z Version 3.5, Hall Associates Consulting, Quincy, MA, (2000).
[31]. L. B. Kier, L. H. Hall, Genetic Algorithms in Molecular Modeling
Molecular Connectivity in Structure- Activity Analysis, Research Studies Press, Letchworth, Hertfordshire, U.K., (1986).
[32]. M. Randic, Characterization of molecular branching.J. Am. Chem. Soc., 97 (1975) 6609-6615.
[33]. A. B. Roy, S. C. Basak, D. K. Harriss, V. R. Magnuson, Neighborhood complexities and symmetry of chemical graphs, and their biological applicationsin Mathl. Modelling Sci. Tech., X.J.R. Avula, R.E. Kalman, A.I. Liapis, E.Y. Rodin, eds., Pergamon Press, New York, (1984)745-750.
[34]. L. B. Kier and L. H. Hall, "Molecular Structure Description: The Electrotopological State", Academic Press, San Diego, CA (1999).
[35]. SAS Institute, Inc. In SAS/STAT User Guide, Release 6.03 Edition; SAS Institute Inc.: Cary, NC,USA.,(1988).
[36]. A. E. Hoerl, R. W. Kennard, Ridge Regression: Biased Estimation for
Nonorthogonal Problems ; Technometrics., 12(1970a) 55-67.
[37]. A. E. Hoerl, R. W. Kennard, Ridge Regression: Application to Nonorthogonal Problems ; Technometrics., 12(1970b) 69-82.
[38]. I. E. Frank, J. H. Friedman, , A statistical view of some chemometrics regression tools (Disc: pp. 136148),Technometrics., 35(1993) 109-135.
[39]. S. Wold, Drug Design Strategies: Computational Techniques and Applications., Technometrics., 35(1993) 136-139.
[40]. A. Hoskuldsson, A combined theory for PCA and PLS. J. Chemometrics 9(1995) 91-123.
[41]. A. Hoskuldsson, PLS regression methods. J. Chemometrics 2(1988) 211-228.
[42]. S. C. Basak, D. Mills, M. M. Mumtaz, K. Balasubramanian, Use of topological indices in predicting aryl hydrocarbon (Ah) receptor binding potency of dibenzofurans: A hierarchical QSAR approach.Indian J. Chem., 42A(2003) 1385-1391.
[43]. S. C. Basak, D. Mills, H. A. El-Masri, M. M. Mumtaz, D. M. Hawkins, Predicting blood:air partition coefficients using theoretical molecular descriptorEnviron. Toxicol. Pharmacol., 16 (2004) 45-55.
[44]. S. C. Basak, D. Mills, D. M. Hawkins, H. ElMasri, Prediction of human blood: air partition coefficient: a comparison of structure-based and property-based methods.RiskAnalysis., 23(2003) 11731184.
[45]. S. C. Basak, D. Mills, D. M. Hawkins, H. A. ElMasri, Prediction of tissue-air partition coefficients: a
comparison of structure-based and property-based methods. SARQSAR Environ. Res., 13(2002) 649-665.
[46]. D. M. Hawkins, S. C. Basak, D. Mills, Assessing model fit by cross-validation. J. Chem. Inf. Comput.Sci., 43 (2003) 579-586.
[47]. J. J. Kraker, D. M. Hawkins, S. C. Basak, R. Natarajan, D. Mills, Quantitative structure-activity relationship (QSAR) modeling of juvenile hormone activity: Comparison of validation procedures, Chemometr. Intell. Lab. Syst., 87(2007) 33-42.
[48]. S. C. Basak, R. Natarajan, D. Mills, D. M. Hawkins, J. J. Kraker, Quantitative structure-activity relationship modeling of juvenile hormone mimetic compounds for Culex pipiens larvae, with a discussion of descriptor-thinning methods.J. Chem. Inf. Model., 46(2006) 65-77.
[49]. M. C. Lin, H. H. Ho, G. R. Pettit, E. Hamel, Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin.Biochemistry., 28 (1989) 6984-6991.
[50]. T. Beckers, S. Mahboobi, Natural semisynthetic and synthetic microtubule inhibitors for cancer therapy. Drugs Future., 28(2003)767-785.
[51]. Q. Li, H. L.Sham, "Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer," Expert Opin.On Ther. Pat., 12(2002) 1663-1702.
[52]. H. Prinz, Recent advances in the field of tubulin polymerization inhibitors.
Expert Rev. Anticancer Ther., 2(2002) 695-708.
[53]. P. M. Checchi, J. H. Netlles, J. Zhou, P. Snyder, H. C. Joshi, Microtubule-interacting drugs for cancer treatment.Trends Pharmacol. Sci., 24 (2003) 361-365.
[54]. T. L. Nguyen, C. McGrath, A. R. Hermone, J. C. Burnett, D. W. Zaharevitz, B. W. Day, P. Wipf, E. Hamel, R. Gussio, A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach.J. Med. Chem., 48 (2005) 6107-6116.
[55]. J. Y. Mane, M. Klobukowski, Free energy calculations on the binding of colchicine and its derivatives with the alpha/beta-tubulin isoforms.J. Chem. Inf. Model., 48(2008) 1824-1832.
[56]. I. Khan, R. Luduena, Different effects of vinblastine on the polymerization of isotypically purified tubulins from bovine brain.InVest. New Drugs., 21(2003) 3-13.
[57]. A. Banerjee, R. Luduena, Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain.J. Biol. Chem., 267(1992) 13335-13339.
[58]. C. Hansch, A. Leo, Exploring QSAR: Fundamentals and Applications in Chemistry and

Biology, American Chemical Society, Washington, DC, (1995).
[59]. M. Lajiness, Computational Chemical Graph Theory., ed Rouvray DH (Nova, New York), (1990) 299-316.
[60]. http://www.osha.gov/dsg/hazcom/ghs.html [61].TSCA Inventory: http://www.epa.gov/lawsregs/laws/tsca.
[62]. U. Maran, M. Karelson, A. R. Katritzky, A Comprehensive QSAR Treatment of the Genotoxicity of Heteroaromatic and Aromatic.Quant. Struct.-Act. Relat., 18, (1999)3-10.
[63]. G. W. Mushrush, S. C. Basak, J. E. Slone, E. J. Beal, S. Basu, W. M. Stalick, D. R. Hardy, Computational study of the environmental fate of selected aircraft fuel system deicing compounds, J. Environ. Sci. Health., A32(1997) 2201-2211.
[64]. S. C. Basak, G. D. Grunwald, G. E. Host, G. J. Niemi, S. P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action.Environ. Toxicol. Chem., 17 (1998)1056-1064.
[65]. S. C. Basak, B. D. Gute, G. D. Grunwald, Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure: A hierarchical QSAR approach. J. Chem. Inf. Comput. Sci., 37(1997)651-655.
[66]. S. C. Basak, D. Mills, Use of mathematical structural invariants in the
development of QSPR models, MATCH Commun. Math. Comput. Chem., 44(2001)15-30.
[67]. B. D. Gute, G. D. Grunwald, S. C. Basak, Prediction of the dermal penetration of polycyclic aromatic hydrocarbons (PAHs): A hierarchical QSAR approach, SAR QSAR Environ. Res., 10 (1999) 1-15.
[68]. S. C. Basak, D. Mills, D. M. Hawkins, H. A. ElMasri, Prediction of Human Blood: Air Partition Coefficient: A Comparison of Structure-Based and Property-Based Methods Risk Analysis., 23(2003) 1173-1184.
[69]. D. M. Hawkins, S. C. Basak, D. Mills, Environ. QSARs for chemical mutagens from structure: ridge regression fitting and diagnostics. Toxicol. Pharmacol., 16(2004)37-44.
[70]. S. C. Basak, D. Mills, D. M. Hawkins, Predicting allergic contact dermatitis: a hierarchical structureactivity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors. J. Comput. Aided Mol. Des., 22(2008)339343.
[71]. D. M. Hawkins, S. C. Basak, J. J. Kraker, K. T. Geiss, F. A Witzmann, Combining chemodescriptors and biodescriptors in quantitative structure-activity
relationship modeling. J. Chem. Inf. Model., 46(2006) 9-16.
[72]. S. C. Basak, D. Mills, M. M. Mumtaz, K. Balasubramanian, Use of topological indices in predicting aryl hydrocarbon (Ah) receptor binding potency of dibenzofurans: A hierarchical QSAR approach.Indian J. Chem., 42A (2003) 1385-1391.
[73]. B. D. Gute, S. C. Basak, Predicting acute toxicity (LC50) of benzene derivatives using theoretical molecular descriptors: a hierarchical QSAR approach.SAR QSAR Environ. Res., 7(1997) 117-131.
[74]. B. D. Gute, G. D. Grunwald, S. C. Basak, Prediction of the dermal penetration of polycyclic aromatic hydrocarbons (PAHs): a hierarchical QSAR approach,SAR QSAR Environ. Res., 10(1999) 1-15.
[75]. S. C. Basak, D. R. Mills, A. T. Balaban, B. D. Gute, Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: a hierarchical QSAR approach. J. Chem. Inf. Comput. Sci., 41(2001)671-678.
[76]. R. Natarajan, S. C. Basak, D. Mills, J. J. Kraker, D. M. Hawkins, Quantitative Structure-activity

Relationship Modeling of MosquitoRepellents Using Calculated Descriptors. Croat. Chem. Acta., 81(2)(2008) 333-340.
[77]. S. C. Basak, D. Mills, Development of quantitative structure-activity relationship models for vapor pressure estimation using computed molecular descriptors. ARKIVOC., 10 (2005) 308-320.
[78]. S. C. Basak, D. Mills, B. D. Gute, and D. M. Hawkins, Predicting mutagenicity of congeneric and diverse sets of chemicals using computed molecular descriptors: A hierarchical approach, in Quantitative Structure-Activity Relationship (QSAR) Models of Mutagens and Carcinogens, R. Benigni, Ed., CRC Press, Boca Raton, FL, Chapter 7, pp. (2003). 207-234 [79]. D. M. Hawkins, J. J. Kraker, S. C. Basak, D. Mills, QSPR checking and validation: A case study with hydroxy radical reaction rate constant $S A R Q S A R$ Environ. Res., 19(2008) 525-539.

[^1]Received: 25.10.15; Revised: 21.11.15; Accepted: 03.12.15

[^0]: * Corresponding Author
 E.mail: prem.santosh82@gmail.com

[^1]: How to cite this article
 Tiwari S.K., Sachan S., Mishra K., Tiwari S. and Pandey V. (2015). QSAR/QSPR Modeling of 2-Phenylindoles as Anticancer Agents. Int. J. Pharm. Life Sci., 6(12):4829-4838.

 Source of Support: Nil; Conflict of Interest: None declared

